Gromov–Hausdorff convergence of non-Archimedean fuzzy metric spaces
نویسندگان
چکیده
منابع مشابه
Gromov-Hausdorff convergence of non-Archimedean fuzzy metric spaces
We introduce the notion of the Gromov-Hausdorff fuzzy distance between two non-Archimedean fuzzy metric spaces (in the sense of Kramosil and Michalek). Basic properties involving convergence and the fuzzy version of the completeness theorem are presented. We show that the topological properties induced by the classic Gromov-Hausdorff distance on metric spaces can be deduced from our approach.
متن کاملNon-Archimedean fuzzy metric spaces and Best proximity point theorems
In this paper, we introduce some new classes of proximal contraction mappings and establish best proximity point theorems for such kinds of mappings in a non-Archimedean fuzzy metric space. As consequences of these results, we deduce certain new best proximity and fixed point theorems in partially ordered non-Archimedean fuzzy metric spaces. Moreover, we present an example to illustrate the us...
متن کاملSemi-compatibility in Non-Archimedean Fuzzy Metric spaces
A. George and P. Veeramani, 1994. On some results in fuzzy metric space, Fuzzy Sets and Systems, vol. 64, 395-399. B. Schweizer, H. Sherwood, and R. M. Tardi®,1988. Contractions on PMspace examples and counter examples, Stochastica vol. 1, 5–17. D. Mihet, 2004. A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems, vol. 144, 431–439. D. Mihet, 2008. Fuzzy -contractive mapp...
متن کاملArchimedean Metric Induced Fuzzy Uniform Spaces
It is shown that the category of non-Archimedean metric spaces with l-Lipschitz maps can be embedded as a coreflectlve non-bireflective subcategory in the category of fuzzy uniform spaces. Consequential characterizations of topological and unif’orm properties are derived.
متن کاملA New Approach to Caristi's Fixed Point Theorem on Non-Archimedean Fuzzy Metric Spaces
In the present paper, we give a new approach to Caristi's fixed pointtheorem on non-Archimedean fuzzy metric spaces. For this we define anordinary metric $d$ using the non-Archimedean fuzzy metric $M$ on a nonemptyset $X$ and we establish some relationship between $(X,d)$ and $(X,M,ast )$%. Hence, we prove our result by considering the original Caristi's fixedpoint theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fuzzy Sets and Systems
سال: 2015
ISSN: 0165-0114
DOI: 10.1016/j.fss.2014.06.016